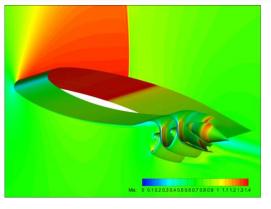


CLEAN AVIATION INFO DAY

REVIEW OF CLEAN SKY 2 AND RESEARCH PERSPECTIVES

27th April, Toulouse P. Schmollgruber (ONERA)

ONERA AT A GLANCE


the European Union

- National Research Center in Aeronautics and Space
- A public enterprise of an industrial and commercial nature ("EPIC") founded in 1946
- 3 activity sectors : Defense, Aeronautics, Space
- About 2000 employees
 - 1300 engineers and managers
 - 280 PhD
 - 110 have the certificate to conduct Research (HDR)
 - 7300 hours of teaching in various universities
- Production
 - 315 congress papers
 - 243 peer reviewed journal
 120 M€ come from
 - 1068 technical reports

- Budget
 - 234 M€
 - direct contracts

ONERA AT A GLANCE

- The activity is distributed on 7 departments and the Wind Tunnel Directorate
 - DAAA: Aerodynamics, Aero elasticity, Acoustics
 - DMPE: Multiphysics for Energetics
 - DMAS: Materials and Structures
 - DEMR: Electromagnetism and Radar
 - DOTA: Optics and associated techniques
 - DPHY: Physics, instrumentation and space environment
 - DTIS: Information processing and systems
- In Aeronautics, activities cover many phases of the aircraft development
- Strategic axes associated to the roadmaps
 - Reduction of the environmental footprint of transport aircraft
 - New simulation capabilities

THE FRENCH AEROSPACE LA

- Clean Sky 2 is a great opportunity for all ONERA Departments to
 - Contribute to technology maturation towards greener aviation
 - Develop their scientific competences based on an Experiment / Modelling / Numerical simulation approach

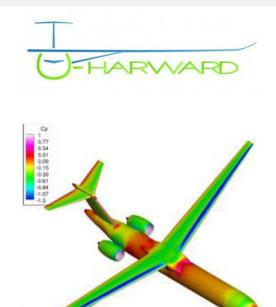
Blade design for Turboprop

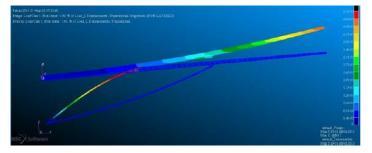
- The ONERA Departments have been involved in many Strategic Platform Demonstrators
- Large Passenger Aircraft IADP Regional Aircraft IADP Fast Rotorcraft IADP Load control **ONERA** DLR ITD Airframe – ITD Engines – ITD Systems Material characterization **ONERA** involved in 4 Thematic Topics **UHBR** integration Co-funded by ONERA he European Union

Extended Laminarity

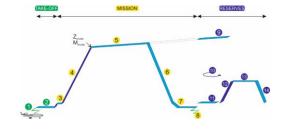
HLFC performance model

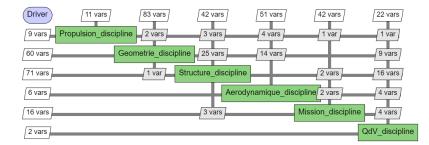
- Contribution to the Open Rotor And Stator propulsion system development
 - Fuel burn reduction
 - Less complex and lighter than CROR solution
- Activity
 - Aerodynamic blade design and optimization of the complete ORAS (rotor and stator) delivering targeted thrust in Cruise and Take Off conditions
 - More than 60 rotor geometries tested
 - Possible compromise between Cruise efficiency and Take Off thrust
 - Influence of RPM on rotor efficiency and flow physics
- Next steps
 - Performance / noise tradeoffs to be assessed

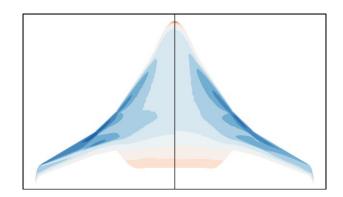



the resuce associates a

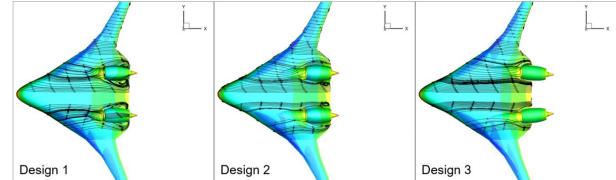
- Investigating High Aspect Ratio Wings (Thematic topic)
 - Key technology allowing a reduction of induced drag
 - Introduction of a strut
- Activity
 - Assessment of the potential gain associtated to the new architecture
 - Multifidelity Overall Aircraft Design process
 - Integration of high-fidelity aerodynamic and structural analyses to accurately predict physics aspects
- Next steps to consolidate the analysis
 - Impact of wing thickness distribution
 - Explore laminar wing options






static deflection (+2.5g sizing case)

- Investigating the BWB concept
 - Aerodynamically efficient
 - Available internal volume
 - Many options at propulsion level


- Activity
 - Benefits from a 4 year project internally funded
 - Overall Aircraft Design process based on OpenMDAO
 - High fidelity analyses for aeroshape optimization
 - BLI version on-going

THE ERENCH AEROSPACE IA

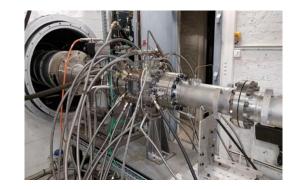
Next steps

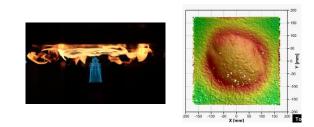
he European Union

- Consolidation of the BLI option
- Assess the Distributed Electric Propulsion

- Derisking Distributed Electric Propulsion (DEP)
 - Scaled Flight Testing
 - Validation of the approach through the Scaled Flight Demonstrator
 - Flight testing the dynamic behavior of DEP
- Collaborative activity with the validation on-going

Minimal changes to the SFD for DEP investigations





TOWARDS CLEAN AVIATION

- Very positive feedback about Clean Sky 2
 - Exchanges with Industry, Research Centers and Universities
 - New partnerships have been defined
 - Good balance between application and scientific activities with 11 PhDs co-funded (2018-2023)
- Key new challenges for Civil Aviation to be investigated in Clean Aviation
 - Flight Physics
 - Propulsion integration
 - Hydrogen aspects (combustion, storage, materials, safety)
- ONERA is looking forward to the next collaboration in the frame of Clean Aviation

Thank you for your attention

ENGAGE with US!

www.clean-aviation.eu

Visit our online stand at https://cleansky.virtualfair.be/

